

Mechanical descaling by high pressure water jet

assoc.prof. Michal Pohanka

Workshop on Pickling Solutions Technology 13th of November 2019, Düsseldorf

Technická 2896/2, 616 69 Brno tel. +420 541143 246, fax +420 541142 224, e-mail: heatlab@fme.vutbr.cz, www.heatlab.cz

Introduction

- Brno University of Technology, Czech Republic
- Hydraulic descaling of coils of wires
- Laboratory experiments
 - Impact pressure distribution measurement
 - Hydraulic descaling
 - EDX Analysis with a Scanning Electron Microscope
- Conclusion

Brno, Czech Republic

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Brno University of Technology

Faculty of Architecture Faculty of Business and Management Faculty of Chemistry Faculty of Civil Engineering Faculty of Electrical Engineering Faculty of Fine Arts Faculty of Information Technology Faculty of Mechanical Engineering

Total students: 19 240

Founded 1899

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Faculty of Mechanical Engineering

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Experimental research of heat transfer and heat treatment Numerical models of continuous casting, rolling and heat treatment

Descaling of coils of wires – outer diameter 1.4 m

Impact pressure distribution measurement

Spray comparison – High and low pressure but same water flow rate

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Spray comparison – High and low pressure but same water flow rate

Video

Distance 300 mm - No wires

Nozzle A at **45** MPa Catalogue spray angle 45°

Nozzle B at **5** MPa Catalogue spray angle 40°

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Impact pressure measurements without dummy wires

Heat Transfer and Fluid Flow Laboratory

Cleaning graphite coating

Nozzle A at 45 MPa

Nozzle B at 5 MPa

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Cleaning graphite coating - Video

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Impact pressure distribution while spraying through wires

1 layer

6 layers

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

One layer of wires

45MPa

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

5MPa

Distance 300 mm - with 6 layers of wires – 5 MPa

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Distance 300 mm - with 1-6 layers of wires – smaller nozzle, 45 MPa

1 layer

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

2 layers

Distance 300 mm - with 1-6 layers of wires - Video

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Spray distances during hydraulic descaling

Distance of descaling header from wires is 200 mm

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Reduced spray angle

Wire descaling using smaller nozzle at 45 MPa for steel grade 1.4571

before descaling	after descaling from 300 mm	
after descaling through dummy wires from	after descaling from 200 mm	
300 mm		

* This is not the final surface of the product. This is surface during pickling program.

EDX Analysis with a Scanning Electron Microscope

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

EDX Analysis with a Scanning Electron Microscope

backscattered (BSE)

secondary electrons (SE)

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

EDX Analysis with a Scanning Electron Microscope

Steel grade 1.4404

	Fe	Cr	Ni	Mo	Mn	Si
Data sheet		16.5–18.5%	10–13%	2–2.5%	≤ 2%	≤1%
Measured	66.4%	17.6%	11.1%	2.9%	1.3%	0.8%

Scale layer on 1.4404

	Fe	0	Cr	Ni	Mo	Mn
Measured	31.3%	27.8%	32.2%	4.0%	3.9%	1.3%

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Scale layer on 1.4404

	Fe	0	Cr	Ni	Мо
Measured	32.7%	20.8%	28.7%	13.5%	4.0%

Brno University of Technology Heat Transfer and Fluid Flow Laboratory

Conclusion

- Big spraying distance (200 mm and more)
 - Free space
 → Use bigger nozzle and smaller pressure
 - Spraying through wires
 → Use smaller nozzle and bigger pressure
- Hydraulic descaling is effective during pickling.

Thank you for your attention...

www.heatlab.cz

Technická 2896/2, 616 69 Brno, Czech Republic Phone +420 541143 246, Fax +420 541142 224, E-mail: heatlab@fme.vutbr.cz, www.heatlab.cz