"Operational experiences of process bath analysis in a wire rod pickling plant"

BFI Workshop "Pickling Solutions Technology", Düsseldorf, 13th November 2019

Frederik Kolinke Deutsche edelstahlwerke

RFCS Project MACO-Pilot

Content of Presentation

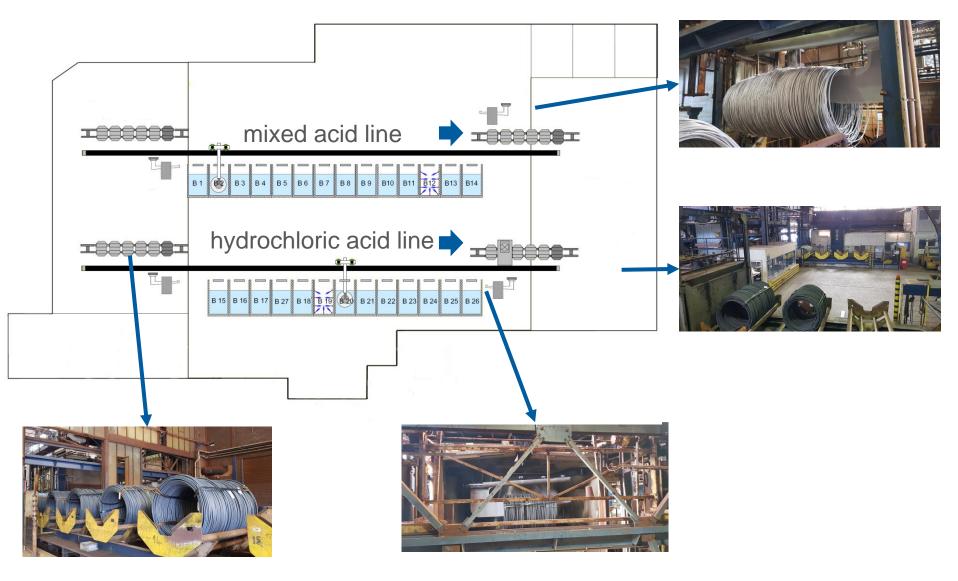
- Overview of DEW wire rod pickling plants for carbon steel and stainless steel
- Online concentration monitoring at HCI-Fe wire rod dip tank pickling plant
- Online concentration monitoring at HF-HNO3 mixed acid wire rod dip tank pickling plant (project MACO Pilot)
- Summary and outlook

Wire rod production at DEW Hagen

Wire rod production at DEW Hagen

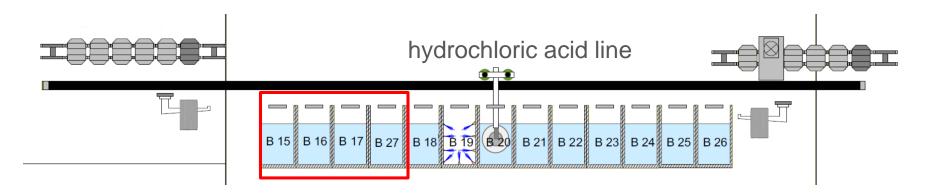
Production Site Hagen:

- > 400 Employees
- > Output per year around 100.000 t
 - > ca. 59 % Construction Steel
 - > ca. 37 % Heat and Acid Resistent Steel
 - > ca. 4 % Tool Steel


Main products:

- > Wire rod steel: Ø 5,5 bis 30 mm
- > Bright Steel
 - Long Products: Ø 2 bis 26 mm, length from 250 bis 6200 mm
 - > Wire rod: Ø 4 bis 22 mm

Wire rod pickling plants

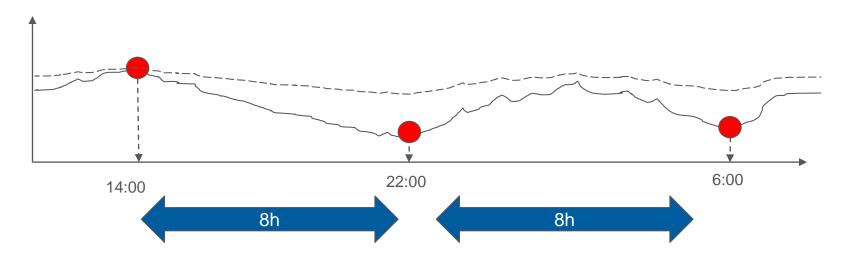


Online-measuring technique for automated concentration supervision at wired rod HCI-pickling plant

Operation HCL Pickling

- > Pickling of Construction Steel, Bearing Steel
- > 4 HCL pickling baths, management of
 - > HCL concentration in g/l
 - > Fe concentration in g/l
- Both values need to be maintained inside certain tolerances

Online-measuring technique for automated concentration supervision at wired rod HCI-pickling plant



Online- Measuring – Advantages

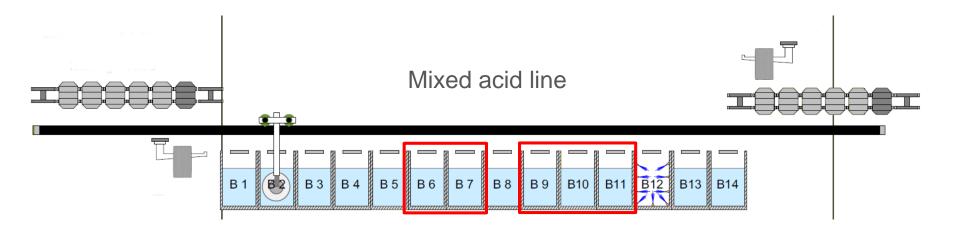
- Offline measurement samples every 8h
- > Concentration management auto dosing depending on Amount of pickled material
- With offline concentration measurement:
 - > Uncertainty in acid and iron concentration between samples for 8h
- With online concentration measurement:

Increase in accuracy maintaining a certain value of acid and iron concentration

Online-measuring technique for automated concentration supervision at wired rod HCI-pickling plant

Operation of Online- Measuring

- > Two sensors per measurement unit
 - Ultrasonic and conductivity sensor
- 2 Units for 4 HCL Pickling Baths
- Positioned inside the heating Loop
- Continous Measurement and Visualization of
 - > HCL Concentration in g/I
 - Fe Concentration in g/l



Maintenance of Online - Measuring

- Rinsing with NaOH once per month for 24h
- Every 6 month visual inspection and recalibration
- Operation since 2006 (13 years)

Operation Mixed Acid Pickling

- > Pickling of Heat and Acid Resistent Steel
- > 5 mixed acid pickling baths, management of
 - > HF concentration in g/I
 - > HNO3 concentration in g/l
 - > Fe concentration in g/l
- All three values need to be maintained inside certain tolerances

Initial situation at mixed acid line

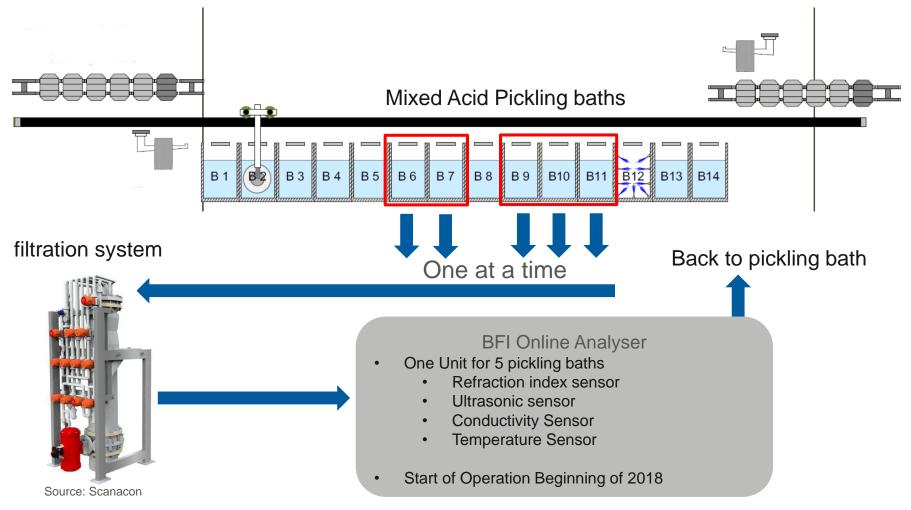
- The bath concentration supervision by at-line analysis is time consuming (manual sample drawing, analysis time about 30 minutes per tank sample) and thus the sample frequency limited to about 8 h.
- Some steel grades can cause high temperate increase >> 40 °C in the pickling tanks during the complex chemical reactions of the HF-HNO3-acid mixture
- The adjustment of the acid concentration within the set-point ranges and the control of the tank temperature is very import for save process control

Solution

Additional installation of an high-rate mixed acid analysis system

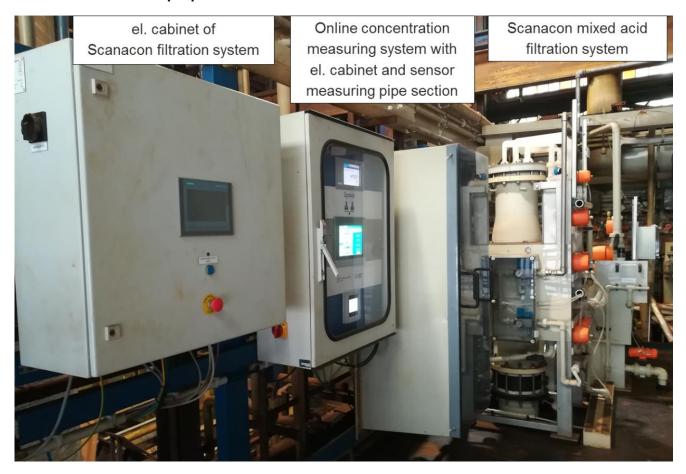
Special Conditions inside miced acid line

> Problem: Very high solid matter accumulation in pickling acid >> 10 g/L


 Refraction index sensor functionality of online analysis system limited to 9 g/L

Solution

Solution: online analyser sample stream pre-treatment by filtration system



Integration of concentration measuring system / filtration technique at the DEW mixed acid wire rod pickling plant

Installation of the equipment

DEUTSCHE EDELSTAHLWERKE

Summary of current main project results

- Successful installation and commissioning of filtration technique and online concentration measuring system
- > The pickling tank concentration monitoring frequency can be increased from about 8 h (by chemical at-line analysis) to about 2,5 h by application of the online analysis.
- The combination of at-line analysis and online-analysis enables a significant improvement of the pickling process control (faster adjustment of bath concentrations by open-loop correction dosage of acids + reduction of critical process conditions / better management of autocatalytical process conditions)
- Online analysis system functionality and analyses accuracy depends on operation conditions (e.g. higher gas bubble accumulation in sample stream after filtration technique, low flow rates, temperature oscillations > 10 k/h during pickling tank switching ...)
- > At present, after calibration deviations between online analysis and BFI laboratory reference analysis < +/- 5 g/L for free HF and total metals and < 10 g/L for free HNO₃ concentration (under ideal measuring conditions)

Outlook

Tests and Optimisation of measurement equipment

- → Further optimisation works and tests at the pickling plant applications → 12/2019
- > Further optimisation of concentration calculation models → 12/2019
- > Testing of pickling programme management model tool (developed by University of Oviedo) → 12/2019

Thank you for your kind attention!

Open for discussion...