Recovery of Acids and Metals from Pickling Solutions by Combined Membrane Processes

EU SPIRE Project ReWaCEM

Dr.-Ing. Joachim Koschikowski Fraunhofer Institute for Solar Energy Systems ISE Heidenhofstr. 2, 79110 Freiburg joachim.koschikowski@ise.fraunhofer.de

R&D in Water Treatment Overview on Skills and Competence

Membrane Technology

- hydrophobic membranes for membrane distillation and related membrane contactors
- electrodialysis membranes and stacks
- scaling and fouling on membranes
- MD module, process and system technology
- liquid-liquid and liquid-gas contactors

Water-Energy Nexus

- PV driven pumping systems
- PV driven reverse osmosis desalination
- PV driven ultrafiltration for purification and disinfection
- solar-, geothermal and waste heat driven membrane distillation (MD) for desalination
- concentrated solar power and multieffect distillation for desalination

Minerals and Water recovery

- MD for acid recovery in steel plating industry and related processes
- MD for super-concentration of brines before crystallization
- electrodialysis metathesis (EDM) for selective separation of mono and multivalent ions

CONTENT

- The Scope of the ReWaCEM Project
- Proces design and technology
- Design and construction of demonstraton systems
- Results and conclusions

Acid and Metal Recovery from Pickling Solutions Scope of the ReWaCEM Project

Connection of none pressure driven membrane processes for acid, metal salt and water recovery

The scope of the ReWaCEM Project:

- Connection of Diffusion Dialysis and Membrane Distillation for acid recovery in steal plating and pickling processes
- Recovery of metal salts by chemical precipitation
- Recovery of fresh water for process reuse
- Total avoidance of liquid discharge

Ciemat

Acid and Metal Recovery from Pickling Solutions Scope of the ReWaCEM Project

The ReWaCEM Project, 4 Demonstration cases:

Case 1: Recovery of hydrochloric acid (170g/lt) + metals from pickling in zinc plating processes (Feed 13kg/h)

Case 2: Recovery of sulfuric acid (55g/lt) from rinsing water in copper coating + Recovery of water from precipitation (Feed 5.6kg/h)

Case 3: Recovery of mixed nitric + hydrofluoric acid (320 / 40 g/lt) pickling solutions in the stainless steel industry (Feed 70kg/h)

Case 4: Recovery of gold and Palladium in printed circuit board industry (Feed 345 l/h)

Process Design for Acid and Metal Recovery Combined Membrane Processes and Reactive Precipitation

Core technology for the recovery and concentration of HCl, mixed HNO_3 -HF and H_2SO_4

Process Design for Acid and Metal Recovery Diffusion Dialysis for Acid Recovery

Diffusion Dialysis - Core technology for the recovery of acids

Process Design for Acid and Metal Recovery Membrane Distillation Temperature and Va

For Acid Concentration

Temperature and Vapor pressure profile across the membrane

Process Design for Acid and Metal RecoveryMembrane DistillationFor Acid ConcentrationTemperature and Vapor pressureprofile across the membrane

Process Design for Acid and Metal Recovery Combined Membrane Processes and Reactive Precipitation

Core technology for the recovery and concentration of HCl and Iron recovery in Zinc plating

Process Design for Acid and Metal Recovery Combined Membrane Processes and Reactive Precipitation

Core technology for the recovery of H₂SO₄ and concentration of Na₂SO₄ in Cupper electroplating

- Treatment capacity: 70 l/h
- Aim: Recovery of acid and concentration by 40%

- Treatment capacity: 70 l/h
- Aim: Recovery of acid and concentration by 40%

- Treatment capacity: 70 l/h
- Aim: Recovery of acid and concentration by 40%

- Treatment capacity: 70 l/h
- Aim: Recovery of acid and concentration by 40%

- Treatment capacity: 70 l/h
- Aim: Recovery of acid and concentration by 40%

Demonstration system for HF-HNO₃ recovery from pickling solutions in stainless steel production

Demonstration systems, technical properties:

- Treatment capacity 10 100 l/h
- All components are made from acid resistant polymers (PVDF, PTFE,...)
 - Completely encapsulated and exhausted
 - Fully self controlled by SPS system
- CE certified for operation in industrial environment

Demonstration systems for HCl, H₂SO₄ and HF-HNO₃ recovery

Demonstration systems, technical properties:

- Treatment capacity 10 100 l/h
- All components are made from acid resistant polymers (PVDF, PTFE,...)
- Completely encapsulated and exhausted
- Fully self controlled by SPS system
- CE certified for operation in industrial environment

Demonstration systems main components

Demonstration systems main components

MD membrane area 12 – 25 m²

DD Membrane area 10 – 70 m² (1 or 2 modules)

Demonstration systems main components

RP Reactor 20 l

DD Membrane area 10 – 70 m² (1 or 2 modules)

On Site Demonstration - Results Implementation and Operation Demo A

HCl and Fe recovery from hot dip galvanization at Tecnozinco Sicily

Installation in April 2019

On Site Demonstration - Results Implementation and Operation Demo A

HCl and Fe recovery from hot dip galvanization at Tecnozinco Sicily

	Demo A Recovery HCl / Fe	Comment
Feed capacity	20 - 40 l/h	
DD – Acid recovery	80 - 98%	Very high acid recovery is possible
DD – Metal rejection	65 - 80%	Far behind expectations, leakages in membrane / sealing are expected
MD – Acid concentration factor	1.1 - 1.5	Appropriate for reuse
MD – Metal salt rejection	~90%	Too low, reason unclear
RP – recovery Fe	~99%	Very good and highly selective

On Site Demonstration - Results Implementation and Operation Demo B

Demonstration system B for H₂SO₄ and Cu recovery from electro plating at ELECTRONIQUEL Spain

On Site Demonstration - Results Implementation and Operation Demo B

H₂SO₄ and Cu recovery from electro plating at ELECTRONIQUEL Spain

	Demo B Recovery of H ₂ SO ₄ / Cu / Natrium Sulfate Cupper electro plating	Comment
Feed capacity	5 - 25 l/h	
DD – Acid recovery	70 - 85%	Behind expectations but improvement in progress
DD – Metal rejection	82%	Lower than expected, reasons may be associated with formation of metal clusters
MD – Acid / Salt concentration factor	1.6 - 3.8	High concentration ratios can be achieved in both applications
MD – Acid / Salt rejection	100%	Works very well
RP – Recovery ratio Cupper	80 - 85 %	Acceptable can also be improved
Fraunhofer ISE		📈 🗾 Fraunhofe

On Site Demonstration - Results Implementation and Operation Demo C

HF-HNO₃ recovery from stainless steel pickling line at DEW Germany

Source:DEW

On Site Demonstration - Results Implementation and Operation Demo C

HF-HNO₃ recovery from stainless steel pickling line at DEW Germany

	Demo C Recovery of HNO ₃ / HF in stainless steel pickling	Comment
Feed capacity	35-100 l/h	
DD – Acid recovery	80-90% DD only 80 - 90% DD – MD open loop 65% with DD - MD closed loop	Very good recovery of acid by DD possible but MD distillate as draw solution has lower driving force through HF contamination
DD – Metal rejection	90-95%	Metal rejection is good
MD – Acid concentration factor	1.2	Concentration of acid by MD is lower than expected \rightarrow HNO ₃ mainly, HF is not concentrated \rightarrow too volatile and passes the membrane
MD – Metal salt rejection	100%	Very good
Operation experience	~600h	No damages, fully atomized operation

Thank you for your attention

ReWaCem project team visits DEW Hagen

Joachim Koschikowski Fraunhofer Institute for Solar Energy Systems ISE www.ise.fraunhofer.de joachim.koschikowski@ise.fraunhofer.de

