Presed – Predictive Sensor Data mining

Initial situation:

  • Some steelworks experiences problems with product deficiencies like slivers and cracks.
  • Several pre-studies indicated a relationship between the time dependence of a set of measured values and the occurrence frequency of the defect.
  • Methods for predicting, detecting and reducing the defect early in the process are desired.

Working topics:

  • Highly resolved time-series process data is analysed with respect to the root causes for these defects.
  • Influential key factors are derived from the time-series data to quantify the probability of the defects.
  • An event-detection for time-series data will be developed.
  • The know-how about the interdependencies is conserved in an ontological knowledge base.

Results:

  • A prediction system for the defect probability is developed to assist the plant personnel.
  • Novel results on defect appearance and root causes are expected.
  • Reduction of slivers and cracks by operating the processes at optimum working points.

Siehe auch

Verschleißschutz: Chemisch Nickel-Dispersionsbeschichtung

Situation: Werkzeugverschleiß entsteht durch Temperaturgradienten und -schwankungen Mechanische Spannungen Abrasion und Oberflächenermüdung Lösung: Entwicklung von Verschleißschutzsystemen auf Basis von Chemisch […]

TransHyDE-Sys – Systemanalyse zu Transportlösungen für grünen Wasserstoff

Ausgangssituation Wasserstoff wird in Zukunft ein wichtiger Baustein zur Erreichung der Klimaziele in Europa sein Ohne eine geeignete Transport-Infrastruktur kann […]

H2BF – CO2-Minderung durch H2-Injektion in den Hochofen – Projektphase 1

Ziel dieses vom Land NRW geförderten Vorhabens ist die technische Erprobung eines neuen, modifizierten Hochofenprozesses, bei dem Wasserstoff aus erneuerbaren […]

FOMTM – Fibre optical thermal monitoring at CC billet mould

Initial situation: The initial solidification of the molten steel is important for determining the quality of the cast product Rim formation […]