Presed – Predictive Sensor Data mining

Initial situation:

  • Some steelworks experiences problems with product deficiencies like slivers and cracks.
  • Several pre-studies indicated a relationship between the time dependence of a set of measured values and the occurrence frequency of the defect.
  • Methods for predicting, detecting and reducing the defect early in the process are desired.

Working topics:

  • Highly resolved time-series process data is analysed with respect to the root causes for these defects.
  • Influential key factors are derived from the time-series data to quantify the probability of the defects.
  • An event-detection for time-series data will be developed.
  • The know-how about the interdependencies is conserved in an ontological knowledge base.

Results:

  • A prediction system for the defect probability is developed to assist the plant personnel.
  • Novel results on defect appearance and root causes are expected.
  • Reduction of slivers and cracks by operating the processes at optimum working points.

Siehe auch

LowCarbonFuture – Analyse von Projekten zur zukünftigen kohlenstoffarmen Stahlerzeugung

Ausgangssituation Die Eisen- und Stahlindustrie ist einer der energieintensivsten industriellen Sektoren Ziel der EU Klimapolitik sowie des Weltklimavertrags: Reduzierung der […]

Reallabor H2Stahl – Wasserstofftechnologien zur schrittweisen Dekarbonisierung der Stahlindustrie

Zielsetzung des vom BFI koordinierten Reallabors H2Stahl ist eine weitreichende Umstellung der Stahlindustrie auf Wasserstofftechnologien. Dadurch sollen in Duisburg, dem […]

DynStir – Dynamic stirring in secondary metallurgy

Initial situation: Stirring is often carried out on the basis of static pre-set parameters, without regard to the changing metallurgical […]

AdaptEAF – Adaptive EAF on-line control for improved energetic efficiency

Initial situation: Properties of scrap used as charge material for EAF steelmaking are changing with time regarding composition, yield, energy […]