Presed – Predictive Sensor Data mining

Initial situation:

  • Some steelworks experiences problems with product deficiencies like slivers and cracks.
  • Several pre-studies indicated a relationship between the time dependence of a set of measured values and the occurrence frequency of the defect.
  • Methods for predicting, detecting and reducing the defect early in the process are desired.

Working topics:

  • Highly resolved time-series process data is analysed with respect to the root causes for these defects.
  • Influential key factors are derived from the time-series data to quantify the probability of the defects.
  • An event-detection for time-series data will be developed.
  • The know-how about the interdependencies is conserved in an ontological knowledge base.

Results:

  • A prediction system for the defect probability is developed to assist the plant personnel.
  • Novel results on defect appearance and root causes are expected.
  • Reduction of slivers and cracks by operating the processes at optimum working points.

Siehe auch

PROTEUS-RS – Optimierung der Qualität von Langprodukten durch Nutzung verbesserter eigenspannungsminimierender Prozessstrategien

Situation: Während des Walzens, Richtens und thermischen Verarbeitens von Langprodukten entstehen Eigenspannungen, die die Materialeigenschaften der Produkte beeinträchtigen. Durch den […]

SPIRE Projekt DESTINY

Development of an Efficient microwave System for material Transformation in energy INtensive processes for an improved Yield Situation: Die Stahlerzeugung […]

I2MSteel – Softwareagenten für ein neues Automatisierungsparadigma

I2MSteel – Entwicklung eines neuen Informations- und Automatisierungsparadigmas für die intelligente und integrierte Fertigung in der Prozessindustrie basierend auf holonischen […]

SitErk – Process situation detection

Initial situation: Process experts want to analyse sensorial data with regard to a specific scenario or situation.  A situation is […]