Presed – Predictive Sensor Data mining

Initial situation:

  • Some steelworks experiences problems with product deficiencies like slivers and cracks.
  • Several pre-studies indicated a relationship between the time dependence of a set of measured values and the occurrence frequency of the defect.
  • Methods for predicting, detecting and reducing the defect early in the process are desired.

Working topics:

  • Highly resolved time-series process data is analysed with respect to the root causes for these defects.
  • Influential key factors are derived from the time-series data to quantify the probability of the defects.
  • An event-detection for time-series data will be developed.
  • The know-how about the interdependencies is conserved in an ontological knowledge base.

Results:

  • A prediction system for the defect probability is developed to assist the plant personnel.
  • Novel results on defect appearance and root causes are expected.
  • Reduction of slivers and cracks by operating the processes at optimum working points.

Siehe auch

PowGETEG – TEG for high temperature waste heat recovery

Initial situation: Industries involve a huge amount of energy demand. A considerable amount of this energy is lost and escapes […]

WEISS – Effiziente Kreislaufführung von Kühlwasser durch integrierte Entsalzung am Beispiel der Stahlindustrie

Ausgangssituation Einsatz von 2,3 Mrd. m3/a Wasser branchenübergreifend für Kühlzwecke in Deutschland Aufsalzung durch Verdunstung/Kreislaufführung in Kühlkreisläufen erfordert Abschlämmung von […]

GREENSTEEL

Am 16 January 2020 fand das Kick-off-Meeting für das RFCS-Projekt “Green Steel für Europe” (GREENSTEEL) beim Koordinator Centre For European […]

Green Steel for Europe

Ausgangssituation: Die Europäische Union hat sich durch den Rahmen für die Klima- und Energiepolitik bis 2030 sowie die langfristige Strategie […]