H2-DisTherPro – Avoidance of CO2 emissions in the steel industry by utilzing of hydrogen in batch-type thermoprocess plants on the example of batch annealing

  • Initial situation
    • The demand for natural gas in German iron and steel production is around 20.8 TWh. This corresponds to energy-related CO2 emissions of around 4.2 million tCO2/a.
    • Climate-neutral steel production (“Green Steel”) to be achieved by 2045
    • “green” hydrogen – the energy carrier of the future – can be used to substitute fossil fuel gases and co-product gases
  • Project goals
    • Using the example of a batch annealing system, hydrogen is to be used for heating to enable CO2-free/low-emission production
    • Reduction of the energy demand by increasing the energy efficiency of thermoprocessing plants (reduction of the exhaust gas volume flow, increase of the adiabatic combustion temperature, increase of the combustion efficiency, increase of the heat transfer)
    • Transferability to other thermoprocessing plants is to be ensured through simulation and modelling
    • Guarantee of safe operation under the changed boundary conditions
    • Ensuring consistently high product quality
    • Development of a supply and utilisation concept for the efficient use of H2
  • Innovative approach
    • First-time use of up to 100 % hydrogen for heating batch annealing systems
    • Demand scenarios & Supply concepts (generation, storage, transport)
    • Safety-related/constructive adaptations
    • Modelling of the discontinuous annealing process with hydrogen heating; use of numerical simulation (CFD)
    • Long-term testing of hydrogen utilization on selected annealing hoods
    • Modification/adaptations of the plant
    • Gradual increase of the hydrogen content in the fuel gas
  • Possible benefits for industry
    • Compilation of potentials and obstacles for the efficient and cost-effective use of hydrogen technology
    • Safety concepts
    • Cost analysis
    • CO2 balance of the production chain within the framework of an LCA to illustrate the actual CO2 savings
    • Catalogue of measures or roadmap for the conversion from natural gas to oxygen
    • CO2 savings of approx. 350 ktCO2 at bonnet annealing plants in Germany

Funding source: Federal Ministry of Education and Climate Protection (The joint project is a research project within the 7th Energy Research Programme).





INTEGA – Thermoelectric generators (TEG) for high temperature

Situation: In the iron and steel industry, large amounts of heat are lost as radiation. One possibility for the use […]

NEBS – Use of waste heat for electricity generation using ORC

Initial situation: In the iron and steel industry as well as other energy-intensive industries, a variety of different thermal process […]

PROTEUS-RS – Long Product Quality Optimisation through Enhancement and Utilisation of Residual Stress minimising Process Strategies

Situation: During rolling, straightening and thermal processing of long products internal stresses arise impairing the products material properties and causing […]

DissHEAT – Dissemination of the heating technology research results for emission minimization and process optimization towards todays fossil-free heating agenda

Background Over the past 30 years, the steel industry has reduced their emissions by over 25% and is aiming for […]