Tuyère 16 of the blast furnace 9 Hamborn, where the experiments of the project are performed

H2BF – CO2-Mitigation through Injection of H2 into the Blast Furnace – Project Phase 1

This project is funded from the State of NRW and aims to technically investigate a new, modified blast furnace process. Hydrogen produced by renewable energies is intended to partly replace the fossil-based carbon as reducing agent. By the injection of H2 into the blast furnace the CO2-emissions of the process are expected to decrease significantly.

The H2-injection into the blast furnace will be investigated through experimental campaigns at one tuyère during ongoing operation. The experiments include a first injection while gradually increasing the H2-stream and, as a second step, a continuous injection over 24 hours at one tuyère. Besides, as alternative production route, a direct reduction with pure H2 shall be investigated during the project in form of technicalscale experiments.

After a successful completion of this first project phase, a second phase – a demonstration for all tuyères of the blast furnace – shall follow. Therefore, this first project phase aims to technically investigate the modified process and develop a concept for conduction of the second phase.

Recommendation

PreventSecDust – Reduction of dust emissions in the furnace

Initial situation: Due to the wide range of material transports, the preparation of the fluff is one of the largest […]

CoolCut – Development of an innovative industrial cutting technique for highly abrasive web-type material

Situation: High tribological load on circular knives, resulting in high wear. Wear of knives caused by different mechanisms, depending on […]

TempKorroSchu

Situation: During re-heating of material for the production of special long products and forged screws 1 to 2 % of […]

Rensodyn – Knowledge-based process management for better energy utilization

Initial situation: Alternating feedstocks at sintering plant and blast furnace Adaptations of the process management to changing boundary conditions necessary […]