High pressure water jet treatment of a wire coil

HiJetRod Pilot – Resource-efficient hydromechanical descaling system for wire coils

Initial situation

  • Descaling of stainless steel wire requires several pickling steps with high consumption of chemicals and long treatment time.
  • Stainless steel grades that are difficult to descale have to be treated with up to 100 % of double passages of the wire coils through the pickling line.
  • In the forerunner project HiJetRod a process for hydromechanical descaling of wire coils has been developed.

Project objectives

  • Scale-free surface of wires after a single passage through the pickling line, including high-alloyed steel grades
  • Avoiding double passages through the pickling line and increasing production capacity
  • Reduction of water and energy consumption of hydromechanical descaling
  • Demonstration of hydromechnical descaling in pilot tests
  • Quantification of process benefits (reduction of treatment time and acid consumption)

Innovative process approaches

  • Use of new pulsating nozzles for efficient descaling
  • New concept for coil rotation to minimize contact marks due to wire-wire contact
  • Pilot tests for determination of efficiency including life cycle assessment

Current results (as of 03/2018)

  • First pilot tests have shown the efficiency of hydromechanical descaling for 13 stainless steel grades.
  • In laboratory tests, pulsating nozzles have shown better descaling results than flat fan nozzles. However, for utilization in pilot installations their start-up behavior has to be improved.
  • Contact marks due to wire-wire contact can be minimized with a modified turning mandrel.
  • A representation of the descaling process has been set up with the program SIMBA# for development of a water recycling concept.

Outlook

  • Pilot tests for a wide range of stainless steel wire coils, determination of descaling efficiency, resource consumption and maintenance effort
  • Life cycle assessment for process evaluation

Applications and transferability of the hydromechanical descaling process

 

Presentations from the international workshop November 11, 2019

BFI-Workshop-Pickling-Solutions-Technology-2019-Information-Flyer

1-BFI Workshop-Presentation- Surface_treatment_by_pickling_(M_ Kozariszczuk)
2-BFI-Workshop-Presentation-Mechanical_Descaling_(M_Pohanka)
3-BFI-Workshop-Presentation_Pickling_bath_online_concentration_analysis_(M_Werner)
4-BFI-Workshop-Presentation-Operational_expierence_online_pickling_bath_analysis_(F_Kolinke)
5-BFI-Workshop-Presentation-Optimisation_of_pickling_process_by_model-based_simulation_(I_Gonzales)
6-BFI-Workshop-Presentation-Polymeric_Sensor_Coatings_(J_Engblom)
7-BFI-Workshop-Presentation-Operational_experience_for_the_recycling _of_process water_and_acids_(Steuler)
8-BFI-Workshop-Presentation-Pickling bath particle separation and atline analysis_(Scanacon)
9-BFI-Workshop-Presentation-Recovery_of_Acids_and_Metals_from_Pickling_Solution_(J_Koschikowski)
10-BFI-Workshop-Presentation-Recycling_valuable_components_(R_Wolters)

Recommendation

H2BF – CO2-Mitigation through Injection of H2 into the Blast Furnace – Project Phase 1

This project is funded from the State of NRW and aims to technically investigate a new, modified blast furnace process. […]

Green Steel for Europe

Initial situation: The European Union set concrete targets for the reduction of greenhouse gas emissions in terms of its 2030 […]

HiperScale – High performance hot rolling process through steel grade-dependent influencing of the scale formation and flexible descaling control

Initial situation: Scale formation during reheating leads to material losses. Poor descalability and scale residuals lead to surface impairments and […]

DynaWater4.0 – Dynamic value creation networks through digital collaboration between industrial water management and production

Initial situation Automation, networking and digital technologies are transformation drivers of process water treatment Coordination of production processes and process […]