Visualisierung im Leitstand mit aktuell beobachtetem und vorausberechnetem Temperaturverlauf

IntModCon – Integrated process models for liquid steel production

Initial situation:

The development of a melt in temperature and chemical analysis during liquid steel production can generally be observed only indirectly (e.g., by exhaust gas analysis) or punctually after interruption of the treatment process (e.g., by themoelement measurement or sampling and laboratory analysis). As a rule, the process control is based on procedural rules and treatment schemes with quality-dependent setpoints, which are stored in a steelwork control system.
BFI has developed and tested dynamic process models based on mass and energy balances for the processes of liquid steel production, taking into account thermodynamic and reaction kinetics, which can be used for continuous online monitoring of the development of the melt as well as for the dynamic adaptation of the set values ​​for their further treatment.


The horizontal integration of the dynamic process models across the different process stages of liquid steel production within a superior steel plant control system allows a step-by-step optimized process management with melt-individually adapted setpoints.

Our portfolio:

For continuous monitoring of the melt development, the steelworks control system provides the integrated dynamic process models with the necessary input data, e.g. With respect to charged materials, cyclically measured process conditions in the various plants as well as point-measured melt temperatures, steel and slag analyzes. On the basis of the actual state of the melt calculated therefrom, the target state required for its treatment end (eg, beginning of the casting process), as well as the boundary conditions defined by the stored procedural rules for their further treatment (eg minimum and maximum durations of process steps, (Eg entries of electrical energy, oxygen or flushing gas, addition of reducing agents and slag formers, duration of deep vacuum treatments) are then determined with the aid of corresponding preliminary calculations of the models.


More information can be found here.


Thermography for energy monitoring of products and processes

With the aid of thermocameras, temperatures and energy losses of products and aggregates can be visualized Your goals: Non-contact detection […]

Knowledge management through semantic modeling

Communication between autonomous systems requires a common language and uniform semantics. Furthermore, due to the increasing complexity of the entire […]

Optimization of dedusting

Goals: Cost-effective inventory and assessment of existing plants with regard to dust emissions and the efficiency of dedusting Proposal and […]

Adjustment of the fuel gas air ratio in the near stoichiometric range

Your goals: Efficient heat treatment of steel, non-ferrous metals, porcelain / ceramics Gas generation from natural gas Complete thermal post-combustion […]