Computer simulation for secondary metallurgy processes in the framework of RFCS

Reza Safavi Nick Reza.safavinick@swerea.se

2D schematic representation:

The following assumptions are made:

The following processes have been taken into account:

- Interaction between gas and melt
- Vacuum
- Movment of free surface
- Time-dependent flow

The gas phase consist of:

- CO
- Ar

Liquid melt contains:

- C
- O
- Non-reacting liquid metal

Velocity Vector Field [m/s]

CO Content in gaseous phases

Carbon content in the melt [ppm]

Carbon content in the melt with respect to time:

Trajectory of inclusion:

Domain of calculation for the 3D simulation:

Velocity vector field

Velocity vector field with respect to plugs

Trajectory of inclusions in a 3D vessel:

• Temperature distribution and heat loss:

A 2D domain has been used:

Two flow rates have been used:

- 80 l/min
- 160 l/min

Model assumptions:

- One-way inclusion coupling
- Inclusions generation ignored
- Inclusions chemistry: Al2O3
- Inclusions are spherical
- Slag layer is ignored
- Flat free surface

- Inclusions particle density:
 - Group A: 2.8-5.6 um, 2.3e10 l/m3
 - Group B: 5.6-11.2 um, 3.1e9 l/m3
 - Group C: 11.2-23.4 um, 2.3e8 l/m3

Mechanisms related to inclusion growth and removal:

- Inclusion growth due to the stokes collision
- Inclusion growth due to the turbulent collision
- Inclusion growth due to the Brown collision
- Inclusion removal due to the bubble attachment
- Inclusion removal due to the slag absorption
- Inclusion removal due to its sticking on the wall

Effects of mechanisms on inclusion removal:

Open eye size vs. Slag viscosity and flow rate:

Case	Flow rate [l/min]	Slag Thickness [cm]	Slag viscosity [Pa.s]			
1	80	10	4.3e-4		stee tiltie meriti on	the thickness II am
2	80	25	4.3e-4		who y security -0.48945. Tak 12 m 36 bledo	 Sing House Service Office All Profession Co. 400 Plants
3	80	10	8.0e-3			
4	, 120	0.0915	18 ² 0e-3	Sagariants.		
$k_r^N = \frac{0.013 \cdot j \cdot q_S}{1 + 161 \cdot a_O + 63.4 \cdot a_S}$				us and the second		
					elag chini were 19 cm slagt vizocano (1868 Pare Q = 62 Grana	 ring charles — 10 cm ring charles you had been Q = 120 Units

PART OF RI.SE

Q=80 I/min, Slag Thickness: 10 cm, slag viscosity: 4.3e-4 Pa.s

- Two cases were considered:
 - Case a small cell or big bubble d_b>Z
 - Case b
 small bubble d_b<Z
- Z is the vertical extension of a c

Nitrogen Transport

$$N_N^m = \frac{n_N}{dt} \frac{A \cdot \delta}{100 \cdot 14} k_r^N \{ [\%N]^2_i - [\%N]^2_e \}$$

$$k_r^N = \frac{0.015 \cdot f^2_N}{1 + 161 \cdot a_o + 63.4 \cdot a_s}$$

Profil ARBED modified sulphur content in slag

Initial compositions

<u>Slag</u>

```
{}^{\circ} %Al_2O_3=11.77, %CaO=58.21, %FeO=0.73
%MgO=7.39, %MnO=0.16, %SiO_2=17.89
%S=0.5
Steel
%Al=0.0277, %C=0.0806, %Mn=1.16
%Si=0.184, %S=0.009 %N=7.8·10<sup>-3</sup>
```

- Average [Al], [S], [Si] and [O] contents in the steel melt
- Average [N] contents in the steel melt

Concentration profile of nitrogen

Improvment of inclusion floatation during RH treatment

Geometry and its schematic:

Improvment of inclusion floatation during RH treatment

Profile of the flow inside the vessel:

Velocity vector profile

Particle trajectory

concentration

Open eye for center plug

Open eye for ecentric plug

Effects of viscosity on the size of the open eye:

Q=200 l/min,
$$v$$
 (slag) = 4.6e-4 m2s-1

Q=200 l/min, v (slag) = 4.6e-3 m2s-1

Q=200 l/min, v (slag) = 4.6e-2 m2s-1

Q=200 l/min, v (slag) = 4.6e-1 m2s-1

Q=50 l/min, v (slag) = 4.6e-1 m2s-1

Effect of grid on the solution:

Water model:

oil height: 2 cm, centric plug

Open eye size vs. Oil height

H = 20 mm

H = 40 mm

gas flow: 3.6 l/min, centric plug

Open eye vs. Plug position and number

Centric Eccentric Double lance

CFD vs. Water model

gas flow: 7 l/min, centric plug, oil height: 6cm

• 3D gas plume:

Schematic:

Gas flow:

Horizental velocity at the top surface along a line through nozzel

Velocities for the 35 tonne ladle at Uddeholm Tooling. Gas flow rate 60 NI/min

• EMS:

Heating:

Slag-metal interface modelling:

ORI Martin ladle model:

Emulsification:

Emulsification threshold

Mass of slag emulsified

 Floatation probability for particles of different diameter as a function of gas flow rate

Corus EMS model:

Streamlines

Temperature profile

Evaluation of heating together with gas stirring

Plant ladle geometry data and operational parameters

Outer ladle diameter	3.550 m
inner ladle diameter (D)	2.950 m
outer ladle height	4.000 m
melt filling height (H)	2.640 m
thickness of slag layer	approx. 0.1 m
heat size	approx. 126 t
ladle H/D ratio	0.89
position of plug 1 (main)	y = +0.380 m (+0.25 R)
position of plug 2 (alternate)	y = -0.160 m (-0.11 R)
stirring gas flow rates uring LF operation	170 l/min (stp) or 80 l/min (stp)

Schematic drawing of the numeric ladle set-up

Evaluation of heating together with gas stirring

Gas flow rate 800 l/min

Temperature profile:

Gas flow rate 170 l/min

Gas flow rate 800 l/min

Melt temperature w.r.t time

a) stirring gas flow rate 170 l/min (stp)

b) stirring gas flow rate 800 l/min (stp)

Uddeholm Tooling Al-addition:

• Flow profile for different variants:

Case	Plug 1 [l/min]	Plug 2 [l/min]
1	60	60
2	120	120
3	200	200
4	60	200

Flow profile for differetn varients:

Inclusions separation:

Resource-saving operation of stainless steel refining in VOD and AOD processes

Domain of calculation:

Dimension of computational domain [m]

H1	H2	D1	D2	
2.37	0.612	2.327019	2.982	

Resource-saving operation of stainless steel refining in VOD and AOD processes

 Distribution of carbon concentrations in % for an AOD heat at start of inert gas blowing, after 10s and after 30s.

Summary

- RH degasser:
 - Melt conposition
 - Inclusion model
 - Temperature profile and heat transfer
- Ladle:
 - Stirring: gas and/or industion
 - Arc heating
 - Homogenization
 - Melt composition
 - Inclusion model
- AOD and VOD:
 - Melt composition
 - Temperature profile
 - Decarburization
- The newest simulation work is at least 6 years old!

Vi arbetar på vetenskaplig grund för att skapa industrinytta. www.swerea.se

Scientific Work for Industrial Use www.swerea.se

