Presed – Predictive Sensor Data mining

Initial situation:

  • Some steelworks experiences problems with product deficiencies like slivers and cracks.
  • Several pre-studies indicated a relationship between the time dependence of a set of measured values and the occurrence frequency of the defect.
  • Methods for predicting, detecting and reducing the defect early in the process are desired.

Working topics:

  • Highly resolved time-series process data is analysed with respect to the root causes for these defects.
  • Influential key factors are derived from the time-series data to quantify the probability of the defects.
  • An event-detection for time-series data will be developed.
  • The know-how about the interdependencies is conserved in an ontological knowledge base.

Results:

  • A prediction system for the defect probability is developed to assist the plant personnel.
  • Novel results on defect appearance and root causes are expected.
  • Reduction of slivers and cracks by operating the processes at optimum working points.

Siehe auch

EvalHD – High resolution process data for quality assessment

Initial situation Plant-wide quality databases exist at many steel producers Data-warehouses are optimized for per-coil data access For statistical analysis […]

PlantTemp – Plant wide control of steel bath temperature

Initial Situation The aim of steel bath temperature control is to prepare the melt such that it meets the target […]

INTEGA – Thermoelektrische Generatoren (TEG) für Hochtemperatur

Ausgangssituation: In der Eisen- und Stahlindustrie gehen große Wärmemengen als Strahlung verloren.  Eine Möglichkeit zur Nutzung von Strahlungswärme ist die […]

WEISS – Effiziente Kreislaufführung von Kühlwasser durch integrierte Entsalzung am Beispiel der Stahlindustrie

Ausgangssituation Einsatz von 2,3 Mrd. m3/a Wasser branchenübergreifend für Kühlzwecke in Deutschland Aufsalzung durch Verdunstung/Kreislaufführung in Kühlkreisläufen erfordert Abschlämmung von […]