TotOptLis – Through-process optimisation of liquid steelmaking

 Initial situation:

  • Process control in secondary metallurgy is based on static operating instructions and manual interventions, taking into account measurements and model calculations at individual treatment stations.
  •  Target values for single treatment steps do not ensure optimal overall process operation.

Working topics:

  • Development of through-process dynamic models for observation and prediction of steel temperature and steel quality parameters (esp. regarding desulphurisation, degassing, slag conditions).
  •  Development of multi-criteria optimisation tools based on operating instructions defined in a manufacturing execution system (MES) coupled to dynamic model prediction calculations.


  • Optimal adoption of countermeasures when deviations from standard treatment practices regarding quality relevant process parameters occur.
  •  Unified cost-effective and resource saving process operation, taking into account the whole chain of treatment steps.


Siehe auch

Rensodyn – Wissensbasierte Prozessführung zur besseren Energienutzung

Ausgangssituation: Wechselnde Einsatzstoffe an Sinteranlage und Hochofen Anpassungen der Prozessführung an wechselnde Randbedingungen notwendig Senkung von Brennstoffverbrauch und Emissionen gewünscht […]

PreventSecDust – Verminderung von Staubemissionen im Hochofenwerk

Ausgangssituation Die Möllervorbereitung gehört durch den vielfältigen Materialtransport zu den größten Staubquellen im Hochofenwerk. Wichtige Kenntnisse zur Entstehung von sekundären […]

Presed – Predictive Sensor Data mining

Initial situation: Some steelworks experiences problems with product deficiencies like slivers and cracks. Several pre-studies indicated a relationship between the time […]

CheckSIS – Performance assessment for automatic surface inspection systems

Initial situation In modern steel production, automatic surface inspection systems (ASIS) are commonly used to detect and classify surface defects […]