Visualisierung im Leitstand mit aktuell beobachtetem und vorausberechnetem Temperaturverlauf

IntModCon – Integrated process models for liquid steel production

Initial situation:

The development of a melt in temperature and chemical analysis during liquid steel production can generally be observed only indirectly (e.g., by exhaust gas analysis) or punctually after interruption of the treatment process (e.g., by themoelement measurement or sampling and laboratory analysis). As a rule, the process control is based on procedural rules and treatment schemes with quality-dependent setpoints, which are stored in a steelwork control system.
BFI has developed and tested dynamic process models based on mass and energy balances for the processes of liquid steel production, taking into account thermodynamic and reaction kinetics, which can be used for continuous online monitoring of the development of the melt as well as for the dynamic adaptation of the set values ​​for their further treatment.

Objectives:

The horizontal integration of the dynamic process models across the different process stages of liquid steel production within a superior steel plant control system allows a step-by-step optimized process management with melt-individually adapted setpoints.

Our portfolio:

For continuous monitoring of the melt development, the steelworks control system provides the integrated dynamic process models with the necessary input data, e.g. With respect to charged materials, cyclically measured process conditions in the various plants as well as point-measured melt temperatures, steel and slag analyzes. On the basis of the actual state of the melt calculated therefrom, the target state required for its treatment end (eg, beginning of the casting process), as well as the boundary conditions defined by the stored procedural rules for their further treatment (eg minimum and maximum durations of process steps, (Eg entries of electrical energy, oxygen or flushing gas, addition of reducing agents and slag formers, duration of deep vacuum treatments) are then determined with the aid of corresponding preliminary calculations of the models.

Information:

More information can be found here.

Recommendation

Knowledge management through semantic modeling

Communication between autonomous systems requires a common language and uniform semantics. Furthermore, due to the increasing complexity of the entire […]

High temperature corrosion

Your goals: Under operating conditions (furnace atmosphere, temperature, times) Determination of scale constants Determination of decarburization tendency Selection of suitable […]

CFD- and FEM-Simulation

Your Goals: Improvement of plant efficiency and component optimization by simulation of technical flows in furnace components (burners, fans etc…) […]

Processing of raw materials and residues by agglomeration

Situation: Agglomeration also results in fine-grained feedstocks, e.g. Alternative carbon carriers, fine-grained or ferrous residuals, and made usable for sintering […]